Ring Structure of Splines on Triangulations

نویسندگان

  • N. Villamizar
  • NELLY VILLAMIZAR
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation by Splines on Triangulations

We review recently developed methods of constructing Lagrange and Her-mite interpolation sets for bivariate splines on triangulations of general type. Approximation order and numerical performance of our methods are also discussed.

متن کامل

Optimal N-term approximation by linear splines over anisotropic Delaunay triangulations

Anisotropic triangulations provide efficient geometrical methods for sparse representations of bivariate functions from discrete data, in particular from image data. In previous work, we have proposed a locally adaptive method for efficient image approximation, called adaptive thinning, which relies on linear splines over anisotropic Delaunay triangulations. In this paper, we prove asymptotical...

متن کامل

Optimal Quasi-Interpolation by Quadratic C-Splines on Type-2 Triangulations

We describe a new scheme based on quadratic C-splines on type-2 triangulations approximating gridded data. The quasiinterpolating splines are directly determined by setting the BernsteinBézier coefficients of the splines to appropriate combinations of the given data values. In this way, each polynomial piece of the approximating spline is immediately available from local portions of the data, w...

متن کامل

Minimal energy surfaces using parametric splines

We explore the construction of parametric surfaces which interpolate prescribed 3D scattered data using spaces of parametric splines defined on a 2D triangulation. The method is based on minimizing cettain natura1 energy expressions. Several examples involving filling hoies and crowning surfaces are presented, and the role of the triangulation as a Parameter is explored. The problem of creating...

متن کامل

Convexity preserving splines over triangulations

A general method is given for constructing sets of sufficient linear conditions that ensure convexity of a polynomial in Bernstein–Bézier form on a triangle. Using the linear conditions, computational methods based on macro-element spline spaces are developed to construct convexity preserving splines over triangulations that interpolate or approximate given scattered data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015